Room temperature controller RAM 713 S

Contents

1	Functional characteristics	4
	1.1 Operation	5
	1.2 Benefits of RAM 713 S	5
	1.2.1 Special features	6
	1.2.2 Comparison of RAM 713 / RAM 713 S	6
2	Technical data	7
	2.1 General	7
3	The application program "RAM 713 S V1.3"	8
	3.1 Selection in the product database	8
	3.2 Parameter pages	8
	3.3 Communication objects	9
	3.3.1 Object characteristics	9
	3.3.2 Description of the objects	.11
	3.4 Parameters	. 15
	3.4.1 Settings	. 15
	3.4.2 Setpoint values	. 16
	3.4.3 Operation	. 18
	3.4.4 Actual value	. 20
	3.4.5 Heating control	. 22
	3.4.6 Cooling control	. 24
	3.4.7 Setpoint values for cooling	. 27
	3.4.8 Additional stage heating	. 28
	3.4.9 Operating mode	. 30
	3.4.10 Switching E1, E2, E3	. 32
4	Start-up	. 34
	4.1 Actuators to control heating and cooling	. 34
	4.1.1 Heating control variable	. 34
	4.1.2 Cooling control variable	. 34
	4.1.3 Continuous additional stage	. 34
	4.1.4 Switching additional stage	. 35
	4.2 Control variable display	. 33
	4.5 Typical applications:	. 30
	4.5.1 Heating, onlines and switching	. 30
	4.5.2 Treating and cooling in the 2 wire system	. 30
5	Appendix	. 37
5	5.1 Determining the current operating mode	38
	5.1 Determining the current operating mode	38
	5.1.1 New operating modes	39
	5.1.2 Old operating modes intervalue	. 40
	5.2 Setpoint value offset	. 42
	5.2.1 Setpoint temperature offset using the rotary control	.42
	5.2.2 Setpoint temperature offset via Object 0	.43
	5.3 External interface	.43
	5.3.1 Overview Function of Objects 9 14.	.44
	5.3.2 E1E3 as switching inputs	. 45
	5.3.3 E1E2 Blinds Up / Down	. 45

	5.3.4	Blinds single button operation	46
	5.3.5	E1 E2 Dim brighter / darker	46
	5.3.6	Dimming single button operation	47
	5.3.7	E3 as an analogue input for an external sensor	47
	5.3.8	Suitable actuators	48
	5.4 2-	-stage heating	48
	5.5 T	emperature control	49
	5.5.1	Introduction	49
	5.5.2	Response of the P-control	50
	5.5.3	Response of the PI-control	51
6	Glossa	۲ ۲۷	52
	6.1 C	ontinuous and switching control	52
	6.2 H	vsteresis	52
	6.2.1	Negative hysteresis:	52
	6.2.2	Positive hysteresis	53
	6.3 D	ead zone	53
	6.3.1	Case 1: Heating and cooling with continuous control	53
	6.3.2	Case 2: Heating with 2-point control and cooling with continuous control	54
	6.3.3	Case 3: Heating with continuous control and cooling with 2-point control	54
	6.3.4	Case 4: Heating and cooling with 2-point control	54
	6.4 B	asic setpoint value and current setpoint value	55
	6.4.1	Setpoint value calculation	56
		-	

1 Functional characteristics

The RAM 713 S room thermostat is an EIB room thermostat with 3 binary inputs (see <u>external interface</u>) which can function both in continuous and 2 point operating mode.

It measures the current room temperature (actual value) and sends either a <u>continuous control variable</u> (0...100%) or a switching command (on/off) to an actuator or. thermal actuator to achieve the required room temperature (setpoint value).

Using the optimised binary inputs, switches and keys (floating) can be connected to switch, dim and control blinds.

The blinds and dimmer channels can also be controlled with a single button An external temperature sensor can be alternatively connected to input 3 (analogue).

Possible actuators are, for instance: Cheops drive, HMT 6, HMT 12, HMG 8

In addition to the heating system, the RAM 713 S can also control a cooling system.

In order to easily adapt to the setpoint values in respect of living comfort and energy saving, RAM 713 S has four operating modes:

- Comfort
- Standby
- Night mode
- Frost protection mode

A setpoint value is assigned to each operating mode.

Comfort mode is used when the room is occupied.

In **standby mode**, the setpoint value is reduced slightly. This operating mode is used when the room is not occupied but is expected to be shortly.

In **night mode**, the setpoint value is drastically reduced, since the room is not expected to be occupied for several hours.

In **frost protection mode**, the room is controlled to a temperature that eliminates the risk of damage to the radiators through freezing at low ambient temperatures:

This can be desirable for 2 reasons:

- The room is not occupied for several days.
- A window has been opened and no further heating is required for the time being.

The operating modes are usually controlled by a timer.

For optimum control, however, presence indicators and/or presence keys and window contacts are recommended.

See chapter on "Determining the setpoint values ".

1.1 Operation

For operation and display functions, RAM 713 S is fitted with 5 LEDs, a push button and a rotary control.

The left LED shows the status display of the control variable:

Red	Heating control variable	greater 0%
Blue	Cooling control variable	greater 0%
OFF	Both control variables	= 0%

The other 4 LEDs show the current operating mode.

- Comfort
- **∆** Standby
- Night
 Night
- ✤ Frost
 - protection

The push button can be used to change the operating mode or to start the party mode (time limited comfort mode)

The rotary control can be used to either **set** or **offset** the setpoint value, depending on the configuration.

1.2 Benefits of RAM 713 S

- Continuous <u>P-/ PI</u> or <u>switching</u> room thermostat
- <u>Change of operating mode</u> by means of presence and window objects
- Heating and cooling operation
- Alternative actuation of a <u>second heating stage</u> with switching or continuous control variable
- <u>Rotary control</u> for setting or offsetting setpoint values
- Infinite regulation through continuous control variable
- 3 optimised <u>binary inputs</u> for conventional keys/switches or to control blinds/dimmer
- 3. Plus input for <u>external temperature sensor</u> to measure the room or floor temperature, thus allowing <u>control of the floor temperature</u>
- Adjustable effect with the binary inputs
- Blinds and dimmers can also be controlled using single button operation

1.2.1 Special features

RAM 713 S has <u>3 external inputs</u> for keys, switches or an external sensor (to heat floors, for example). Which can be used to control switch, dimmer or blinds actuators.

1.2.2 Comparison of RAM 713 / RAM 713 S

Function	RAM 713 (713 9.200)	RAM 713 S (713 9 201)
Control	Continuous	Continuous and 2 point possible
	Only for limiting	Can be used to control room
	temperature	temperature
Floor sensor	Temperature value cannot	Temperature value can be sent to the
	be sent using "Floor limit	bus in the floor limit mode
	mode"	
Binary inputs	Only function is adjustable	Reaction to opening or closing of
		contact is also adjustable.
Blinds and dimmer	2 button operation	Choice of single or 2 button
control		operation.
Sending the control	to 2 separate objects	Also possible to 1 common object.
variable		
Heating/cooling		

2 Technical data

2.1 General

Power supply:	Bus voltage
Permitted operating temperature:	0°C+ 50°C
Protection class:	III
Protection rating:	EN 60529: IP 21
Dimensions:	HxWxD 80x84x28 (mm)

3 The application program "RAM 713 S V1.3"

3.1 Selection in the product database

Manufacturer	Theben AG
Product familyHeating, ventilation, air conditioning	
Product type	Continuous and 2 point controller
Program name	RAM 713 S: Continuous, 2 point, switch, dimmer, blinds $V1.2^{(1)}$
	RAM 713 S: Continuous, 2 point, switch, dimmer, blinds V1.3 ⁽²⁾

⁽¹⁾For devices before Sept. 2011 ⁽²⁾For devices from Sept. 2011, with V1.3 marking.

The ETS database can be found on our website: http://www.theben.de

3.2 Parameter pages

Function	Description
Settings	Selection of control functions,
_	Standard and user-defined settings, function of the external
	interface
Setpoint values	Setpoint value after download, values for night, frost mode etc.
Setpoint values for	Dead zone and temperature increases conditional to the operating
cooling	mode
Operation	Function of the control elements
Actual value	Mode/function of the sensor, calibration
Heating control	Type of control, heating parameters etc.
Cooling control	Type of control, cooling parameters etc.
Operating mode	Operating mode after reset, presence sensor
Additional stage heating	Control parameters, hysteresis recirculation, bandwidth etc.
<i>Input E1E3</i> Function of connected contact, switches, dimmers, blind	

3.3 Communication objects

3.3.1 Object characteristics

RAM 713 S features 12 communication objects.

Some objects can assume various functions depending on their configuration.

No	Function	Object name	Туре	Response
0	Defines the setpoint temperature	Basic setpoint value	2 bytes EIS5	Receive
0	offset	Manual setpoint value offset	2 bytes EIS5	Receive
1	Report current setpoint value	current setpoint value	2 bytes EIS5	Send
2	Sends actual value	Actual value	2 bytes EIS5	Send
3	Pre-selections operating mode	Pre-selected operating mode	1 byte KNX	Receive
	1 = night, 0 = standby	Night < - > Standby	1-bit	
4	Input for presence signal	Presence	1-bit	Receive
4	1 = comfort	Comfort	1-bit	Receive
5	Input for <u>window status</u>	Window position	1-bit	Receive
5	1 = frost protection	Frost / heat protection	1-bit	Receive
6	Reports current operating mode	Current operating mode	1 byte KNX	Send
	Send current control variable	Heating control variable	1-byte EIS6	Send
7	Send current control variable	Heating control variable	1-bit EIS1	
/	Send current control variable	Heating and cooling control variable	1-byte EIS6	
	Send current control variable	Heating and cooling control variable	1-bit EIS1	
	Send control variable	Cooling control variable	1-byte EIS6	Send
Q	Send control variable	Cooling control variable	1-bit EIS1	Sand
0	Send control variable	Control variable for additional heating stage	1-byte EIS6	Sellu
	Send control variable	Control variable for additional heating stage	1-bit EIS1	Send

No	Function	Object name	Туре	Response
•	Send switch telegram	Switching input 1		
	Sends ON/OFF telegram	Dimmer E1 On/Off		
9	Sends ON/OFF telegram	Dimmer E1E2 On/Off	1-bit	Send
	Slats	Blinds E1 Step/Stop		
	Slats	Blinds E1/E2 Step/Stop	1	
10	Send Up/Down telegram	Blinds E1 Up/Down	1-bit	Sand
10	Sends dim telegram	Dimmer E1	4-bit	Send
	Send switch telegram	Switching input 2	1 hit	
11	Sends ON/OFF telegram	Dimmer E2 On/Off	1-01t	Send
	Slats	Blinds E2 Step/Stop		
	Blinds E2 Up/Down	Send Up/Down telegram	1-bit	
12	Blinds E1/E2 Up/Down	Send Up/Down telegram	EIS 1	Sand
12	Dimmer E2	Sends dim telegram	4-bit	Selia
	Dimmer E1/E2	Sends dim telegram	EIS2	
	Send switch telegram	Switching input 3	1 D;+	
	Sends ON/OFF telegram	Dimmer E3 On/Off		Send
13	Slats	Blinds E3 Step/Stop		
	Send temperature Floor sensor temperature	Floor sensor temperature	2 bytes	
		Floor sensor temperature	EIS5	
	Blinds E2 Up/Down	Send Up/Down telegram	1-bit	Send
14			EIS1	Bend
17	Dimmer F3 Sends	Sends dim telegram	4-bit	Send
			EIS2	
15	Heating $= 0$. Cooling $= 1$	Switches between heating	1-bit	Receive
10		and cooling	EIS1	

Continued:

Number of communication objects	16
Number of group addresses	36
Number of assignments	36

• Object 0 "Basic setpoint value" / "Manual setpoint value offset"

This object can assume 2 different functions.

With it, either a new setpoint temperature can be specified or the current setpoint temperature can be offset by a certain value, depending on the <u>configuration of the rotary control</u>.

Table 4.

Parameters: Function of the rotary	Function of the object
control	
Basic setpoint value /	Defining the setpoint temperature:
	The <u>basic setpoint value</u> is first specified via the
Disabled, but object basic setpoint value	application at start-up and stored in the "Basic
available	setpoint value" object.
	Afterwards it can be specified again at any time
	using the object 0 (limited by minimum or
	maximum valid setpoint value).
	If the bus voltage fails, this object is backed up and
	the last value is restored when the bus voltage
	returns. The object can be described indefinitely
	often.
	Offsetting the setpoint temperature
Manual offset /	The object receives a temperature differential in EIS
	5 format. The desired room temperature (current
Disabled, but object manual offset	setpoint value) can be adjusted from the basic
available	setpoint value by this differential.
	The following applies in comfort mode (heating):
	current setpoint value (Obj. 1) = basic setpoint
	value (rotary control) + manual setpoint value offset $(01, 0)$
	(Obj. 0)
	Values outside of the programmed range (see "Max
	setpoint value offset on the rotary control ") are
	limited to the highest or the lowest value
	Note
	The offset always refers to the set basic setpoint
	value and not to the current setpoint value
	value and not to the <u>current serpoint value</u> .

• Object 1 "Current setpoint value"

This object sends the current setpoint temperature as a EIS 5 telegram (2 bytes) to the bus. The sending behaviour can be set on the "<u>setpoint values</u>" parameters page.

• Object 2 "Actual value"

This object sends the temperature currently being measured by the sensor (if sending through configuration is permitted)

• Object 3 "Pre-selected operating mode" / "Night <-> Standby"

The function of this object depends on the "Objects for determining operating mode" parameter on the "<u>operating mode</u>" parameter page.

Table 5

Objects for determining the operating mode	Function of the object
New:operating mode, presence,	Here is a 1-byte object. One of 4 operating modes
windowstatus	can be directly activated.
	1 = comfort, 2 = standby, 3 = night,
	4 = frost protection (heat protection)
	If another value is received (0 or >4) the comfort
	operating mode is activated.
	The details in brackets refer to cooling mode
Old: Comfort, night, frost	With this setting, this object is a 1 bit object. Night
	or standby operating mode can be activated.
	0=standby 1=night

• Object 4 "Presence" / "Comfort"

The function of this object depends on the "Objects for determining operating mode" parameter on the "<u>operating mode</u>" parameter page.

I able 6

Objects for determining the operating	Function of the object
mode	5
New:operating mode, presence,	Presence:
windowstatus	The status of a presence indicator (e.g. sensor,
	movement indicator) can be received via this object.
	A 1 on this object activates the comfort operating
	mode.
Old: Comfort, night, frost	Comfort:
	A 1 on this object activates the comfort operating
	mode.
	This operating mode takes priority over night and
	standby operation.
	Comfort mode is deactivated by sending an 0 to the
	object.
	Important: Don't send cyclically to this object.
	This would clear a running party mode (started with
	push button) if a 0 is received.

• Object 5 "Window position" / "Frost/heat protection"

The function of this object depends on the "Objects for determining operating mode" parameter on the "<u>operating mode</u>" parameter page.

Table 7

Objects for determining the operating	Function of the object
mode	
New:operating mode, presence, window	Window position:
status	The status of a window contact can be received via
	this object.
	A 1 on this object activates the frost / heat
	protection operating mode.
Old: Comfort, night, frost	Frost/heat protection:
	A 1 on this object activates the frost protection
	operating mode.
	During the cooling operation, the heat protection
	mode is activated.
	The frost/heat protection operating mode takes top
	priority.
	The frost/heat protection mode remains until it is
	cleared again by a 0.

• Object 6 "Current operating mode"

Sends the current operating mode as a 1 byte value (see below: coding of the operating modes).

The sending behaviour can be set on the "Operating mode" parameter page.

Table 8: Coding of the H/AC/V operating mode	s:
--	----

Value	Operating mode
1	Comfort
2	Standby
3	Night
4	Frost protection/heat
	protection

• Object 7 "Heating control variable" / "Control variable for heating and cooling"

Sends the current heating control variable (0...100%) or. heating or cooling if the "output of cooling control variable" parameter has been set to "together with heating control variable".

• Object 8 "Cooling control variable" / "Control variable for additional heating stage"

The function of this object depends on the "Input for actual value" parameter on the "Settings" parameter page.

The send format, EIS6 or EIS1, depends on the type of control selected (continuous or switching) on the "cooling control" side.

Table 9

Used control functions	Function of the object
Heating and cooling	Sends the cooling control variable or switching command to control a cooling surface, fan coil unit etc.
2-stage heating with switching	Sends the switching command to control the
additional stage	additional stage (on/off)
2-stage heating with continuous	Sends the continuous control variable to control the
additional stage	additional stage (0100%)

Note:

In the "<u>Only heating control</u>" setting, the object is not available because neither the cooling function nor the additional stage are available.

• Objects 9, 10, 11, 12, 13, 14 for inputs E1, E2 und E3

These objects are available when the interface on the "Settings" parameter page is activated.

Their function is dependent on the parameters "function of E1", "function of E2" and "function of E3" on the relevant parameter pages (input E1, E2 and E3).

A detailed description can be found in the annex under the heading: External interface.

• Object 15 "Switching between heating and cooling"

This object is used in the <u>2 wire heating/cooling system</u> or if automatic switching between heating and cooling is not required.

The cooling operation is forced via a 1 and the heating operation via a 0.

3.4 Parameters

The standard values are **in bold**.

3.4.1 Settings

Designation	Values	Meaning
Device type	RAM 713 S	Fixed setting
Control	Standard	For simple applications
	User-defined	For specific settings of the
		control parameters and special
		applications such as
		heating/cooling or
		<u>2 stage heating</u> .
Used control functions		User-defined control:
	Heating control only	Heating operation only
	Heating and cooling	An additional cooling system should be controlled (Object 8).
	2-stage heating with switching additional stage	A main stage (typically underfloor heating) and an <u>additional stage</u> (On/Off) should be controlled.
	2-stage heating with continuous additional stage	A main stage (typically underfloor heating) and an additional stage (radiator) can be controlled (P control).
Function of the external	None	Determines whether external
<u>interface</u>	Active	interface is being used.

3.4.2 Setpoint values

Table 11

Designation	Values	Meaning
Basic setpoint value after	18 °C, 19 °C, 20 °C,	Output setpoint value for the
downloading the application	21 °C, 22 °C, 23 °C,	temperature control.
	24 °C, 25 °C	
Maximum valid setpoint	+/- 1 K, +/- 2 K , +/- 3 K	Limits the possible setting
value offset	+/- 4 K, +/- 5 K	range for the "setpoint offset "
		function.
		Applicable for the received
		values above object 0 (manual
		setpoint value offset).
Maximum valid basic setpoint	20°C, 21°C, 22°C	Should a basic setpoint value
value	23°C, 24 °C, 25°C	which is higher than the set
	27 °C, 30 °C, 32 °C	value here be received by
		Object 0, it will be limited to
		this value.
Minimum valid basic setpoint	5°C, 6 °C, 7°C, 8°C,	Should a basic setpoint value
value	9°C, 10°C, 11°C, 12 °C,	which is lower than the set
	13°C, 14°C, 15°C,16°C	value here be received by
	17°C, 18°C, 19 °C, 20 °C	Object 0, it will be limited to
		this value.
Reduction in standby mode	0.5 K, 1 K, 1.5 K	Example: with a <u>basic</u>
(during heating)	2 K , 2.5 K, 3 K	setpoint value of 21°C in
	3.5 K, 4 K	heating operation and a
		2K reduction, RAM /13 S
		controls at a setpoint value of
		$21 - 2 = 19^{\circ}C$
Reduction in night mode	3 K, 4 K, 5 K	By what value should the
(during heating)	0 K, / K, 8 K	temperature be reduced in
Satagint value for frost	3 °C 1 °C 5 °C	Braset temperature for frost
protection operation (during	5 C, 4 C, 5 C	protection operation in
heating)	0 C, 7 C, 8 C	heating mode
lieating)	3 C, 10 C	(Heat protection operation
		applies in cooling mode)
Setpoint offset is allowed*	only in comfort mode	In which operation modes
Serpoint offset is anowed.	only in connort mode	should the setpoint offset
	in comfort and standby mode	work?
	In connort and standby mode	This setting affects both offset
	in comfort standby and night	by hus telegram and by the
	mode	rotary control
	in comfort, standby and night mode	This setting affects both offset by bus telegram and by the rotary control.

* From version 1.1 of ETS application software.

Designation	Values	Meaning
Current setpoint value in		Feedback of current setpoint
comfort mode		value via the bus:
	Sends actual value (Heating	The setpoint value actually
	< > Cooling)	being controlled is always
		sent
		(= <u>current setpoint value</u>){}-
		Example with a basic
		setpoint value of 21°C and a
		dead zone of 2K:
		During heating and cooling,
		21°C and basic setpoint value
		+ dead zone are sent
	Sends average value between	respectively $(21^{\circ}\text{C} + 2\text{K} =$
	heating and cooling	23°C)
		Same value in comfort
		operation mode during both
		heating and cooling operation.
		i.e.:
		Basic setpoint value + half
		dead zone
		are sent to prevent room users
		becoming irritated.
		Example with a basic
		setpoint value of 21°C and a
		dead zone of 2K:
		Mean value= 21° +1K = 22° C
		Although control takes place
		at 21°C
Sanda the automatic straint		OF 25°C
sends the current setpoint		now often should the
value in cycles		be sent?
		be sent?
	not cyclical. only in the	Send only in the event of a
	event of change	change.
	every 2 min.	Send cyclically
	every 3 min.	
	every 5 min.	
	every 10 min.	
	every 15 min.	
	every 20 min	
	every 45 min	
	every 60 min	
	cvery oo min.	

Continued:

3.4.3 Operation

Designation	Values	Meaning
Function of the rotary control	Basic setpoint value (please using the following rotary	The rotary control is used to specify the basic setpoint
	control)	<u>value</u> .
		A <u>setpoint value offset</u> is
		possible via Object 0.
		figures is plugged back onto
	······································	the device.
	Manual offset	The basic setpoint value can
	(please using the following rotary	be increased or decreased
		using the rotary control within the programmed limits (see
	1 1 +	next table row).
		The +/- rotary control is
		plugged back onto the device.
	··///-	
	Disabled, but object basic	The rotary control does not
	setpoint value available	function (protection from
		undesired operation).
		The basic setpoint value can be changed in the application
		or via
		Object 0.
	Disabled, but object manual	The rotary control does not
	offset available	function (protection from
		The basic setpoint value is
		changed in the application
		and can be increased or
	1000 1100 10 00	decreased via Object 0.
Minimum setting on the	$10^{\circ}C, 11^{\circ}C, 12^{\circ}C$	Lowest permissible setting for the basic setpoint value on the
	16°C, 17°C, 18°C	rotary control.
	19 °C, 20 °C	Prevents unauthorised
		individuals from adjusting it.
Maximum setting on the	17°C, 18°C, 19°C	Highest permissible setting
rotary control	20°C, 21°C, 22°C	for the basic setpoint value on
	25°C, 24°C, 25°C	Prevents unauthorised
		individuals from adjusting it.

Designation	Values	Meaning
Max. setpoint offset on the	+/- 1 K, +/- 2 K , +/- 3 K	Permitted offset by user on
rotary control		the rotary control
		The programmed max. or
		min. value is always achieved
		at the stopping point (+ or -).
Function of the key	Disabled	Operation not possible.
	Presence keys	Presence is recognised on
		pressing the key and RAM
		713 S switches to the comfort
		operating mode.
	Selects operating modes	The operating mode can be
		manually selected at all times.
Function of the LEDs	None	The 4 operating mode LEDs
		always remain off.
	Show operating modes	The current operating mode is
		always shown by the
		respective LED
	Shows time limited operating	The ourrent operating reads
	modes	an if anabled he shown by
	modes	call, il enabled, be snown by
		pressing the key for a short
		time (10s).

Continued:

3.4.4 Actual value

Table 13

Designation	Values	Meaning
Use which actual value	From internal sensor	Fixed setting if E3 is not used
		for an external sensor.
		An <u>external sensor</u> can be
		selected via the "Function of
		E3" parameter on the settings
		parameter page.
Function of the external		This parameter is only visible
Selisor		temperature sensor input
		temperature sensor input.
	Temperature control sensor (flush-mounted housing)	The room temperature is measured using the external sensor. The internal sensor is deactivated.
	Floor sensor for temperature control	The room temperature is measured using the internal sensor. The external sensor monitors the underfloor temperature. (see below: Minimum and maximum floor temperature).
	Floor sensor for temperature	Only the floor temperature is measured and used as the basis for temperature control
Minimum floor temperature	No lower limit 10°C, 12°C, 14°C 16°C , 18°C, 20 °C 22°C, 24°C, 26°C 28°C, 30°C	The floor temperature control. The floor temperature is controlled by RAM 713 S depending on the room temperature. However, the floor temperature is not exceeded even when the setpoint temperature has reached the set minimum value.* This setting prevents "cold feet."

* Exception: If the setpoint value is exceeded in the heating and cooling operating mode it switches to cooling and stops sending the heating control variable.

Designation	Values	Meaning
Maximum floor temperature	24°C, 26°C, 28°C, 30°C,	The floor temperature is
	32°C, 34 °C, 36°C, 38°C,	controlled by RAM 713 S
	40°C, 42°C, 44°C, 46°C,	depending on the room
		temperature. However, the
		floor temperature is not
		exceeded even when the
		setpoint temperature has not
		reached the set maximum
		This setting provents among
		other things, the floor from
		becoming deformed through
		overheating
Calibration value for internal	Manual input – 64 63	Positive or negative
sensor		correction of measured
In 1/10 K (-64 63)		temperature in 1/10 K
		increments.
		Examples: a) RAM 713 sends
		20.3°C. A room temperature
		of 21.0°C is measured using a
		calibrated thermometer. In
		order to increase the
		temperature of RAM 713 S to
		21 °C, "7" (i.e. 7 x 0.1K)
		must be entered.
		b) RAM /13 sends 21.3° C.
		20.5°C is measured. In order
		PAM 713 S to 20.5 °C
		(133, 0.16)
		entered
Calibration value for external	Manual input – 64 63	See above, calibration value
sensor		for internal sensor
Transmission of the actual	Not in the event of change	Is the current room
value in cycles	at a change of 0.2 K	temperature to be sent?
(internal and external)	at a change of 0.3 K	If so, from which minimum
	at a change of 0.5 K	change should this be sent
	at a change of 0.7 K	again?
	at a change of 1 K	This setting keeps the bus
	at a change of 1.5 K	load as low as possible.
	at a change of 2 K	
Cyclical Transmission of the	Do not send cyclically	How often should the values
actual value in cycles	every 2 min., every 3 min.	be sent, regardless of the
(internal and external)	every 5 mm., every 10 mm.	temperature changes !
UI Cyclical the external actual	every 30 min., every 45 min	
value in cycles	every 60 min.	

Continued:

3.4.5 Heating control

Designation	Values	Meaning
Type of control	Continuous control	Infinite control
		(0100%).
	2-point control	Switching control (On/Off).
	-	See Appendix: <u>Continuous</u>
		and switching control
Sets the control parameters	Via system type	Standard application
	User-defined	Prof. application: Self-
		configure P/PI control
System type		PI control with:
5 51	Radiator heating	Integrated time $= 90$ minutes
		Bandwidth = 2.5 k
	Underfloor heating	Integrated time $= 180$ minutes
		Bandwidth = 4 k
the heating control variable in	On change by 1%	After how much % change*
cycles	On change by 2 %	in the control variable is the
	On change by 3 %	new value to be sent.
	On change by 5 %	Small values increase control
	On change by 7 %	accuracy but also the bus
	On change by 10 %	load.
	On change by 15 %	
Sends the heating control	not cyclical, only in the	How often is the current
variable in cycles	event of change	heating control variable to be
	every 2 min., every 3 min.	sent (regardless of changes)?
	every 5 min., every 10 min.	
	every 15 min., every 20 min.	
	every 30 min., every 45 min.	
	every 60 min.,	
	2-point control	•
This setting prevents "cold	0.3 K	Interval between the switch-
feet."	0.5 K	off point (setpoint value) and
	0.7 K	the re-switch on point
	1 K	(setpoint value – hysteresis).
	1.5 K	The hysteresis prevents
		constant switching on/off.

Designation	Values	Meaning
Recirculation of hysteresis	None	The recirculation causes a
after switching point	0.1 K/min	gradual decrease in the
	0.2 K/min	hysteresis over time, and the
	0.3 K/min	control accuracy is increased.
		The hysteresis is equivalent to
		the programmed value for
		each switch-off and is
		gradually reduced by the
		recirculation process. The
		hysteresis can reduce to 0 K
		over prolonged periods of
		switch-off.
		At the next switch-on, it is
		reset to the configured value.
	User-defined parameters	
Proportional band of heating	1 K, 1.5 K, 2 K , 2,5 K, 3 K	prof. setting to adapt the
control	3.5 K, 4 K, 4.5 K	control response to the room.
	5 K, 5.5 K, 6 K	Small values cause large
	6.5 K, 7 K, 7.5 K	changes in control variables,
	8 K, 8.5 K	larger values cause finer
		control variable adjustment.
		See Appendix: <u>Temperature</u>
		<u>control</u>
Integrated time of the heating	Pure P control	Professional setting:
control	15 min, 30 min, 45 min	See Appendix: <u>Response of</u>
	60 min, 75 min, 90 min	the PI control
	105 min, 120 min, 135 min	This time can be adapted to
	150 min, 165 min, 180 min	suit particular circumstances.
	195 min, 210 min, 225 min	If the heating system is over-
		dimensioned and therefore too
		fast, shorter values should be
		used. Conversely, under-
		dimensioned heating (slow)
		benefits from longer
		integrated times.

Continued

*Change since last sending

3.4.6 Cooling control

Designation	Values	Meaning
Type of control	Continuous control	Infinite control
		(0100%).
	2-point control	Switching control (On/Off).
		See Appendix: Continuous and
		switching control
Sets the control parameters	Via system type	Standard application
	User-defined	Prof. application: Self-configure
		<u>P/PI control</u>
System type		PI control with:
	Cooling surface	Integrated time $= 90$ mins
		Bandwidth = 2 k
	Fan coil unit	Integrated time $= 180$ minutes
		Bandwidth = 4 k
Sends the cooling control	On change by 1%	After how much % change* in
variable	On change by 2 %	the control variable is the new
	On change by 3 %	value to be sent.
	On change by 5 %	Small values increase control
	On change by 7 %	accuracy and also the bus load.
	On change by 10 %	
	On change by 15 %	
Switches between heating and	automatic	RAM 713 S automatically
cooling		switches to cooling mode when
		the actual temperature is above
		the setpoint value.
		~
	TT	Cooling mode can be activated
	Via object	only on the bus side via Object
		15 (1= cooling).
		Cooling mode remains off for as
		long as this object is not set $(=0)$.
Output of the cooling control	For separate object	Cooling control variable is output
variable	(object 8)	via object 8 and heating control
(Only only on the second states)		variable via object /.
(Only when switching	To anoth an available to a stime	Doth control your history of
between neating and cooling	1 ogetner with heating	Boin control variables are sent
via object)	control variable (object /)	Via object /.
		For 2 wire systems with a valve
		and seasonal change of medium.

2-point control		
Hysteresis of 2 wire control	0.3 K	Interval between the switch-off
for cooling."	0.5 K	point (setpoint value) and the
	0.7 K	re-switch on point (setpoint
	1 K	value – hysteresis).
	1.5 K	The hysteresis prevents
		constant switching on/off.
Recirculation of hysteresis	None	The recirculation causes a
after switching point	0.1 K/min	gradual decrease in the
	0.2 K/min	hysteresis over time, and the
	0.3 K/min	control accuracy is increased.
		The hysteresis is equivalent to
		the programmed value for each
		switch-off and is gradually
		reduced by the recirculation
		process. The hysteresis can
		reduce to 0 K over prolonged
		periods of switch-off.
		At the next switch-on, it is reset
		to the configured value.
	User-defined control parameter	rs
Proportional band of the	1 K, 1.5 K, 2 K, 2,5 K, 3 K	prof. setting to adapt the
cooling control	3.5 K, 4 K , 4.5 K	control response to the room.
	5 K, 5.5 K, 6 K	Large values cause finer
	6.5 K, 7 K, 7.5 K	changes to the control variables
	8 K, 8.5 K	with the same control deviation
		and more precise control than
		smaller values.

Continued:

Designation	Values	Meaning
Integrated time of the cooling	Pure P control	See appendix: temperature
control		<u>control</u>
	15 min., 30 min., 45 min.,	For PI control only:
	60 min., 75 min., 90 min. ,	The integrated time
	105 min., 120 min., 135 min.,	determines the reaction time
	150 min., 165 min., 180 min., 195 min., 210 min., 225 min.	of the control.
		These times can be adapted to suit particular circumstances. If the cooling system is over-
		dimensioned and therefore too
		fast, shorter values should be
		dimensioned cooling (slow)
		benefits from longer
		integrated times.
Sends Sends the cooling	not cyclical, only in the	How often is the current
control variable	event of change	cooling control variable to be
	every 2 min.	sent (regardless of changes)?
	every 3 min.	
	every 5 min.	
	every 10 min.	
	every 15 min.	
	every 20 min.	
	every 30 min.	
	every 45 min.	
	every 60 min.	

Continued

*Change since last sending

3.4.7 Setpoint values for cooling

This page is displayed only when the control function "Heating and cooling" has been selected ("user-defined" control) on the "Settings" parameter page.

Table 1	16
---------	----

Designation	Values	Meaning
Dead zone between heating	1 K *	Specifies the buffer zone
and cooling	2 K *	between setpoint values in
	3 K *	heating and cooling
	4 K *	operations.
	5 K *	The dead zone is expanded
	6 K *	through hysteresis in
		switching (2 point) control.
		See glossary: <u>Dead zone</u>
		* According to each type of
		control:
		"+ Hysteresis heating" or.
		"+ Hysteresis heating.
		+ hysteresis cooling"
Increase in standby mode	0.5 K, 1 K, 1.5 K	The temperature is increased
(during cooling)	2 K , 2.5 K, 3 K	in standby mode during
	3.5 K, 4 K	cooling operation
Increase in night mode	3 K, 4 K, 5 K	See increase in standby mode
(during cooling)	6 K, 7 K, 8 K	
Setpoint value for heat	42 °C (does not represent	The heat protection represents
protection mode (during	heat protection)	the maximum permitted
cooling)	29 °C, 30 °C, 31 °C	temperature for the controlled
	32 °C, 33 °C, 34 °C	room. It performs the same
	35 °C	function during cooling as the
		frost protection mode during
		heating, e.g. saves energy
		while prohibiting non-
		permitted temperatures

3.4.8 Additional stage heating

See also Appendix: <u>2 stage heating</u>

Designation	Values	Meaning
Differential between main	1 K , 1.5 K, 2 K,	Specifies the negative interval
stage and additional stage	2.5 K, 3 K, 3.5 K,	between the current setpoint
	4 K	value and the setpoint value
		of the additional stage.
		Example with a basic
		setpoint value of 21°C and a
		differential of 1K:
		The main stage controls using
		the basic setpoint value, and
		the additional stage controls
		using
		the basic setpoint value – 1K
		$= 20^{\circ}\mathrm{C}$
Proportional band for	1 K, 1.5 K, 2 K, 2.5 K	With a continuous additional
additional stage	3 K, 3.5 K, 4 K , 4.5 K	stage,
	5 K, 5.5 K, 6 K, 6.5 K,	prof. setting to adapt the
	7 K, 7.5 K, 8 K, 8.5 K	control response to the room.
		Large values cause finer
		changes to the control
		variables with the same
		control deviation and more
		precise control than smaller
		values.
Hysteresis	0.3 K	With a switching additional
	0.5 K	stage,
	0.7 K	Interval between the switch-
	1 K	off point (setpoint value) and
	1.5 K	the re-switch on point
		(setpoint value – hysteresis).
		The hysteresis prevents
		constant switching on/off.

Designation	Values	Meaning
Recirculation of hysteresis	None	For switching additional
after switching point	0.1 K/min	switching stage. The
	0.2 K/min	recirculation causes a gradual
	0.3 K/min	decrease in the <u>hysteresis</u> over
		time, and the control accuracy
		is increased.
		The hysteresis is equivalent to
		the programmed value for
		each switch-off and is
		gradually reduced by the
		recirculation process. The
		hysteresis can reduce to 0 K
		over prolonged periods of
		switch-off.
		At the next switch-on, it is
		reset to the configured value.
Sends the control variable for	On change by 1%	After how much % change*
the 2 nd heating stage	On change by 2 %	in the control variable is the
	On change by 3 %	new value to be sent?
	On change by 5 %	Small values increase control
	On change by 7 %	accuracy but also the bus
	On change by 10 %	load.
	On change by 15 %	
Sends Sending the additional	Do not send cyclically	At what intervals should the
heating	every 2 min.	switching status of the
	every 3 min.	additional stage be sent?
	every 5 min.	
	every 10 min.	
	every 15 min.	
	every 20 min.	
	every 30 min.	
	every 45 min.	
	every 60 min.	

Continued:

*Change since last sending

3.4.9 Operating mode

Designation	Values	Meaning
Objects for determining the operating mode	<u>New:operating mode,</u> presence, window status	RAM 713 S can switch the operating mode depending on the window and presence contacts.
	Old: comfort, night, frost	Traditional setting without
	(not recommended)	window and presence status.
Operating mode after reset	Frost protection	Operating mode after start-up
	Night-time temperature	or re-programming
	reduction	
	Standby	
	Comfort	
Type of <u>presence sensor</u> (to Obj. 4)		The presence sensor activates comfort mode
	Presence detector	The presence detector sets or clears the presence object. Receiving another operation mode through obj. 3 doesn't influence the presence object.
		updated until obj. 4 will be reset by the presence detector.
	Presence button	 The presence button sets the presence object. Receiving another operation mode through obj. 3 resets obj. 4. If the presence object is set during night / frost operation, it is reset after the configured comfort extension finishes (see below).
		reported on the bus.

Designation	Values	Meaning
Comfort extension by	None	-
presence keys in night mode	30 min	Party switching:
	1 hour	RAM 713 S can switch again
	1.5 hours	by the presence object from
	2 hours	night / frost mode to comfort
	2.5 hours	mode for a limited time.
	3 hours	
	3.5 hours	The time limit is omitted if
		the device was previously in
		standby mode.
		Comfort operation is ony
		cleared with the next manual
		or bus controlled change of
		operating mode.
Sends the current operating	not cyclical, only in the	How often should the current
mode in cycles	event of change	operating mode be sent?
	every 2 min., every 3 min.	
	every 5 min., every 10 min.	
	every 15 min., every 20 min.	
	every 30 min., every 45 min.	
	every 60 min.	

3.4.10 Switching E1, E2, E3

Designation	Values	Meaning
Fu	nction of E1, E2 or. E3: Switchi	ing
Reaction to closing the	OFF	Send switch-off command
contact	ON	Send switch-on command
	By	Reverse last switching
		command
	None	Do not send
Reaction to opening the	OFF	See above
contact	ON	
	Ву	
	None	
Send cyclically	not cyclical, only in the event	At what intervals should the
	of change	switching status of the
	every 2 min., every 3 min.	switching object be sent?
	every 45 min., every 60	
	min.	
Func	ction of E1 (+ E2): Blinds Up / I	Down
Function of E1	Blinds up	Short keystroke:
		Step/Stop or. Turn slats-
		(Object 9)
		Long keystroke:
		Up telegram (Object 12)
Function of E2	Blinds down	Short keystroke:
		Step/Stop or. Turn slats-
		(Object 9)
		Long keystroke:
		Down telegram (Object 12)
Function of	f E1, E2, E3: Blinds single butto	n operation
Function of E1	Blinds single button operation	Short keystroke:
(or. E2, E3)		Step/Stop or. Turn slats-
		Turning.
		The sent value is opposite to
		the telegram of the last
		directional command
		Long keystroke:
		Up / Down
		Pressing the key again
		reverses the direction of run.
		Always starts with Down
		after bus failure or reset.

Con	tinu	ed:
COL	unu	icu.

Designation	Values	Meaning	
Function of E1 (+ E2): Dim brighter / darker			
Function of E1	Dim brighter	Short keystroke:	
		On / Off (Object 9)	
		Long keystroke:	
		Brighter darker dimming	
		(Object 12)	
Function of E2	Dim darker	Short keystroke:	
		On / Off (Object 9)	
		Long keystroke:	
		Darker dimming (Object 12)	
Function of I	E1, E2, E3: Dimming single but	ton operation	
Function of E1	Dimming single button	Short keystroke:	
(or. E2, E3)	operation	On/Off.	
		Switching status is reversed	
		with each keystroke.	
		Long keystroke:	
		Brighter / darker.	
		Dimming direction is reversed	
		with each keystroke.	
		Always starts with Dim up	
		after bus failure or reset.	
		A stop telegram is sent when	
		releasing after long time	
		operation	
Common pa	rameter for the blinds and dimm	ner functions	
Long keystroke starting at	300 ms	Limit value in differentiating	
	400 ms	between a short and long	
	500 ms	press of the key (in 1/1000s)	
	600 ms	2 different functions can be	
	700 ms	performed depending on	
	800 ms	whether a key is briefly	
	900 ms	pressed or held down.	
	1000 ms		
Fi	unction of E3: Temperature sens	or	
See "Function of external sense	or" on the "Actual value" parame	eter page.	

See Appendix: External interface

4 Start-up

4.1 Actuators to control heating and cooling

There are several possibilities available for controlling the heating and cooling equipment.

4.1.1 Heating control variable

- The control variable is sent to a continuous Cheops actuating drive (Order No. 731 9 200), which is plugged onto the valve
- The control variable is sent to one of the following heating actuators which controls one or more thermal positioning actuators..
 - HMG 4 (Order no. 491 0 210)
 - HME 4 (Order no. 491 0 211)
 - HMG 8 (Order no. 490 0 270)
 - HMT 6 (Order no. 490 0 273)
 - HMT 12 (Order no. 490 0 274)

4.1.2 Cooling control variable

• The control variable is sent to a continuous Cheops actuating drive (Order No. 731 9 200), which is plugged onto the valve for the cooling medium.

4.1.3 Continuous additional stage

- The control variable is sent to a continuous Cheops actuating drive (Order No. 731 9 200), which is plugged onto the valve
- The control variable is sent to one of the following heating actuators which controls one or more thermal positioning actuators..
 - HMG 4 (Order no. 491 0 210)
 - HME 4 (Order no. 491 0 211)
 - HMG 8 (Order no. 490 0 270)
 - HMT 6 (Order no. 490 0 273)
 - HMT 12 (Order no. 490 0 274)

4.1.4 Switching additional stage

- The switching commands are sent to an actuator which controls on its part thermal actuators or an electrical additional heating.
- The switching commands are sent to an actuator which controls on its part thermal actuators or an electrical additional heating.
 - HMG 4 (Order no. 491 0 210)
 - HME 4 (Order no. 491 0 211)
 - HMG 8 (Order no. 490 0 270)
 - HMT 6 (Order no. 490 0 273)
 - HMT 12 (Order no. 490 0 274)

4.2 Control variable display

The current control variable is displayed if the key is held down for more than 2 seconds.

LED	Control
	variable
No LED	0 %
LED 1 (Frost)	1 - 25%
LED 2 (Night)	26 - 50%
LED 3 (Standby)	51 - 75%
LED 4 (Comfort)	76 - 100%

LED 5 shows whether the heating or cooling operation is running.

4.3 Typical applications:

4.3.1 Heating, blinds and switching

In addition to its function as a heating controller, RAM 713 S can control blinds and room lighting and switch on and off via the external interface.

Parameter page: Settings

Function of external interface	active	_

Keys for controlling the blinds (Up/Down and Step/Stop) are connected to E1 and E2. Objects 9 and 10 are linked with the corresponding control objects of the <u>blinds actuator</u>. The switch is connected to the input E3 and the switch object (Object 13) is connected to the relevant channel of the <u>switch actuator</u>.

Hint: Both functions can be realised with the same actuator if necessary. RMG 8 as a switching and blinds actuator or JMG 4 (blinds actuator) with a switching actuator upgrade module RME 8 or RMX 4. (See chapter entitled <u>external interface</u>)

4.3.2 Heating and cooling in the 2 wire system

The following points must be observed for use in a 2 wire heating/cooling system:

- In the 2 wire system, heating and cooling mediums (depending on the season) are lead through the same lines and controlled via the same valve. Über einen Parameter können The cooling control variable and the heating control variable can be sent via a parameter to a single, common object (Object 7) - (see parameter: <u>Output of cooling control variable</u>, chapter on cooling control)
- It is also possible to connect the "heating control variable" and "cooling control variable" objects to the positioning actuator via the same group address.
- The control variables must not be sent cyclically
- The switchover between heating and cooling mediums is performed by the system and must therefore be passed on to the room thermostat. The parameter "Switching between heating and cooling" (Parameter page "Cooling control") is set to "via object". The heating/cooling system must send a 0 for heating mode and a 1 for cooling mode to Object 6 "Switching between heating and cooling" in the RAM 713.

4.3.3 Frost protection via window contact

A window contact should cause automatic switching to frost protection mode (heat protection mode).

A contact is mounted on the window. This is connected directly to an input of the external interface, E1 for instance.

The device is programmed as follows:

"<u>Operating mode</u>" parameter page Objects to select operating mode

New: operating mode, presence, window state 💌

The corresponding switch object (Object 9 for E1) is linked with Object 5 (window position) via the group address.

RAM 713 S will recognise when the window opens and automatically switch to frost protection mode (heat protection mode). When the window is closed the previously set operating mode will be restored. See also <u>New operating modes</u>.

5 Appendix

5.1 Determining the current operating mode

The <u>current setpoint value</u> can be adapted in line with certain requirements by selecting the operating mode.

The operating mode can be specified by Objects 3..5. There are two methods available:

5.1.1 New operating modes

If on the parameter page, new operating mode is selected by the "Determining operating mode" parameter, the current operating mode can be defined as follows:

Table 19

Pre-selected operating	Presence	Window status	Current operating
mode	Object 4	Object 5	mode
Object 3			(Object 6)
Any	Any	1	Frost / heat protection
Any	1	0	Comfort
Comfort	0	0	Comfort
Standby	0	0	Standby
Night	0	0	Night
Frost / heat protection	0	0	Frost / heat protection

Typical application:

In the mornings Object 3 activates "Standby" or "Comfort" mode and in the evenings "Night" mode via a timer (e.g. TR 648).

During holiday periods, Object 3 also selects frost / heat protection via another channel on the timer.

Object 4 is connected to a presence indicator. If a presence is detected, RAM 713 switches to comfort mode (see table).

Object 5 is connected to a window contact via the bus (binary inputs).

As soon as a window is opened, RAM 713 S switches to frost protection mode.

5.1.2 Old operating modes

If on the parameter page, old operating mode is selected by the "Determining operating mode" parameter, the current operating mode can be defined as follows:

Table 20

Night	Comfort	Frost / heat protection	Current operating
Object 3	Object 4	Object 5	mode
			Object 6
Any	Any	1	Frost / heat protection
Any	1	0	Comfort
Standby	0	0	Standby
Night	0	0	Night

Typical application: In the mornings "standby" mode and in the evenings "night" mode is activated via <u>Object 3</u>.

During holiday periods, Object 5 selects frost / heat protection via another channel via \underline{Object} 5.

<u>Object 4</u> (comfort) is connected to a presence indicator. If a presence is detected, RAM 713 S switches to comfort mode (see table).

Object 5 is connected to a window contact. As soon as a window is opened, RAM 713 S switches to frost protection mode.

The old method has two advantages over the new method:

1. To switch from comfort to night operating mode, 2 telegrams (2 timer channels if necessary) are required.

Object 4 must be set to "0" and object 3 to "1".

2. If during periods when "frost / heat protection" is selected via the timer, the window is opened and then closed again, the "frost / heat protection" mode is cleared.

5.1.3 Determining the setpoint value

5.1.3.1 Calculating the setpoint value in heating operation

See also: Basic setpoint value and current setpoint value

Operating mode	Current setpoint value
Comfort	Basic setpoint value setpoint value +/- setpoint value offset
Standby	Basic setpoint value +/- setpoint value offset – reduction in standby mode
Night	Basic setpoint value +/- setpoint value offset - reduction in night mode
Frost / heat	Programmed setpoint value for frost protection mode
protection	

Table 21: Current setpoint value during heating

Example:

Heating in comfort mode.

"Setpoint values" parameter page:

base set point value after download of application	21 °C
Reduction in standby operating mode at heating	2 K

"Operation" parameter page

Max setpoint offset at set wheel	+/- 2 K	_

The setpoint value was previously increased by 1 K using the control variable.

Calculation:

Current setpoint value = basic setpoint value + setpoint value offset = $21^{\circ}C + 1K$ = $22^{\circ}C$

If operation is switched to standby mode, the <u>current setpoint value</u> is calculated as follows:

Current setpoint value = basic setpoint value + setpoint value offset - reduction in standby mode

$$= 21^{\circ}C + 1K - 2K$$
$$= 20^{\circ}C$$

5.1.3.2 Calculating the setpoint value in cooling operation

Table 22:	Current	setpoint	value	during	cooling
		see point		B	B

Operating	Current setpoint value
mode	
Comfort	Basic setpoint value + setpoint value offset + dead zone
Standby	Basic setpoint value + setpoint value offset + dead zone + increase in standby
Standby	mode
Night	Basic setpoint value + setpoint value offset + dead zone + increase in night
	mode
Frost / heat	Programmed setpoint value for heat protection mode
protection	

Example:

Cooling in comfort mode.

The room temperature is too high and RAM 713 S has switched to cooling operation

"Settings" parameter page

Used control functions	heating and cooling controller	•
"Setpoint values" parameter page:		
base set point value after download of application	21 °C	_
"Cooling setpoints" parameter page:		
Dead zone between heating and cooling	2 K	-
Increase in standby mode at cooling	2 K	•
"Operation" parameter page		
Max setpoint offset at set wheel	+/- 2 K	•

The setpoint value was previously lowered by 1 K using the rotary control.

Calculation:

Current setpoint value = basic setpoint value + setpoint value offset + dead zone $= 21^{\circ}C - 1K + 2K$ $= 22^{\circ}C$

Changing to standby mode causes a further increase in the setpoint value (energy saving) and gives rise to the following setpoint value.

Setpoint value = basic setpoint value + setpoint value offset + dead zone

+ increase in standby mode $= 21^{\circ}C - 1K + 2K + 2K$ $= 24^{\circ}C$

5.2 Setpoint value offset

For the RAM 713 S, the <u>current setpoint value</u> can be adjusted in two ways.

- In increments using the rotary control (see "Operation" parameter page, function of the rotary control)
- Directly via Object 0 "Manual setpoint value offset"

The differential between the setpoint value offset and the basic setpoint value is sent by Object 1 at each change (e.g. -1.00).

The offset limits are specified on the "Operation" parameter page by the "Maximum setpoint value offset on the rotary control" parameter and apply to both types of setpoint value offset.

5.2.1 Setpoint temperature offset using the rotary control

This option is available when the rotary control has been enabled on the "Operation" parameter page.

Function of set wheel	manual offeet	-
		<u> </u>

The +/- rotary control is plugged onto the device for this function (see illustration).

In the central position of the rotary control, the setpoint value offset is zero. Should the rotary control be turned to the left (+) until it can be turned no further, the setpoint value will be increased by the programmed maximum setpoint offset.

The offset can be very finely adjusted using the rotary control's notch. The change in temperature per scale line depends on the maximum setpoint value offset which has been programmed.

Maximum setpoint value offset on the rotary	Kelvin / °C per scale line
control	
+/- 1 K (i.e. +/-1°C)	1/6
+/- 2 K	1/3
+/- 3 K	1/2

5.2.2 Setpoint temperature offset via Object 0

This option is available only when the following settings have been selected on the "Operation" parameter page:

Function of set wheel	Base set point value
or	
Function of set wheel	disabled, but man. offset object available

In this case, the setpoint value is changed by sending the desired offset to Object 0. This involves the differential (may be preceded by a minus sign) being sent to Object 0 in EIS5 format.

The offset always refers to the basic setpoint value (as programmed or specified by the rotary control) and not to the current setpoint value.

Example Basic setpoint value of 21°C:

If a value of 2.00 is sent to Object 0, the new setpoint value is calculated as follows: $21^{\circ}C + 2.00K = 23.00^{\circ}C$.

To then bring the setpoint value to 22° C, the differential is resent to the programmed basic setpoint value (here 21° C), in this case 1.00K (21° C+1.00K= 22° C)

5.3 External interface

The external interface is activated on the "Settings" parameter page. It consists of the three inputs E1, E2 and E3.

E1 and E2 are pure binary inputs, and E3 can be used as both a binary and an analogue input for an external temperature sensor.

All 3 inputs are connected in the base via the connection terminals.

The following functions can be performed:

- Switching (1 switch)
- Blinds Up/Down (with 2 keys on E1 + E2)
- Blinds single button operation (with 1 key)
- Dimmer brighter/darker (with 2 keys on E1 + E2)
- Dimmer single button operation (with 1 key)
- Temperature (only E3)

If the blinds and dimmer functions are performed on 2 keys, E1 and E2 are automatically connected with each otherand have a common effect on objects 9, 10 und 12.

5.3.1 Overview Function of Objects 9 .. 14.

Table 24: Function of E1

Eurotion of E1	Function		
Function of E1	Object 9	Object 10	Object 12
Switching	Sends the switching	Not used	Not used
	status of the E1 input		
Blinds UP	Sends commands for	Not used	Sends Up command
	Step/Stop in upwards		to blinds
Note: E2 is	direction-or slat		
automatically set to	positioning		
"Blinds DOWN"			
Blinds single button	Sends commands for	Sends Up/down	Not used
operation	Step/Stop or slat	command to blinds	
	positioning		
Dim brighter	Sends On/Off	Not used	Sends
	commands to the		4-bit dim commands
Note: E2 is	dimmer		
automatically set to			
"Dim darker"			
Dimmer single button	Sends On/Off	Sends	Not used
operation	commands to the	4-bit dim commands	
	dimmer		

Table 25: Function of E2

Eurotion of E2	Function	
Function of E2	Object 11	Object 12
Switching	Sends the switching status of	Not used
	the E2 input	
Blinds single button operation	Sends commands for	Sends Up/down command to
	Step/Stop or slat positioning	blinds
Dimming single button	Sends On/Off commands to	Sends
operation	the dimmer	4-bit dim commands
Blinds down	Fixed setting if E1 is configured to "Blinds up".	
	See previous table: Function of E1	
Dim darker	Fixed setting if E1 is configured to "Dim brighter"	
	See previous table: Function of E1	

Eurotion of E2	Function		
Function of ES	Object 13	Object 14	
Switching	Sends the switching status of	Not used	
	the E2 input		
Blinds single button operation	Sends commands for	Sends Up/down command to	
	Step/Stop or slat positioning	blinds	
Dimming single button	Sends On/Off commands to	Sends	
operation	the dimmer	4-bit dim commands	
Overview	Not used	Not used	

*The measure actual value is sent from object 2.

5.3.2 E1...E3 as switching inputs

If an input is programmed to be a switching input, switches can also be used as keys. The status of the corresponding object (Objects 9...11) is switched to the <u>configuration</u>.

See above Overview:Function of Objects 9.. 14.

5.3.3 E1...E2 Blinds Up / Down

2 keys are connected to control blinds 9E1 + E2). In this case the objects 9 (Step/Stop) and 10 (Up/Down) are linked with an EIB blinds actuator (JMG 4, RMG 8, JMG 4 24 VDC).

For both inputs it is differentiated between short time and long time operation. The time difference between a long and a short press of the key is set on the "Input E1" parameter page. A short keystroke sends the relevant telegram (ON or OFF) to the slat object (Object 9), holding the key down sends a telegram to the drive object (Object 12).

Only one of the two objects is operated at a time.

If one key is held down, the other will not operate.

Table 2	27
---------	----

Pressing key	E1	E2
long	Up telegram (0)	Down telegram (1)
(Affects		
Object 12)		
short	Step/Stop telegram in upward	Step/Stop telegram in
(Affects	direction (0)*	downward direction (1)*
Object 9)		× /

*The decision between Step and Stop occurs in the blinds actuator itself depending on the operating position.

See above Overview:Function of Objects 9.. 14.

5.3.4 Blinds single button operation

Benefit: Single button operation only needs one key and only occupies one input. **Functionality:** Every time the key is pressed the run direction or step direction is reversed.

Table 28

Pressing key	E1, E2, E3	
long	Up or down telegram (0)	
short	Step/Stop telegram in upward or downward direction (0)*	

See above Overview: Function of Objects 9.. 14.

5.3.5 E1 E2 Dim brighter / darker

2 keys can be connected to realise a dimming function.

The objects 9 (Dimming on/of) and 12 (Dimming up/down) must then be linked with EIB dimming actuator DMG 2 (Order No. 491 0 220).

If the "Dim brighter" function is selected on E1, the corresponding function, i.e. "Dim darker", is automatically set for E2.

For both inputs it is differentiated between short time and long time operation. The time difference between a long and a short press of the key is set on the "Input E1" parameter page. If pressed for a short period of time, the respective telegram (ON or OFF) is sent. If pressed for a longer period of time, the telegram is sent to the dimming object (Obj. 12).

Pressing key	E1	E2
long	- Pressing the key sends a start	- Pressing the key sends a
(Affects	telegram for brighter dimming	4-bit start telegram for dim darker
<i>Object</i> 12)	- Letting go sends a stop telegram	- Letting go sends a stop telegram
short	Switch on telegram	Switch off telegram
(Affects		
Object 9)		

Table 29

See above Overview: Function of Objects 9.. 14.

5.3.6 Dimming single button operation

Benefit: Single button operation only needs one key and only occupies one input. **Functionality:** Each additional keystroke changes the dimming direction or switches the light on or off.

Pressing key	E1	
long	- Pressing the key sends a start	
	telegram for brighter or darker	
	dimming	
	- Letting go sends a stop telegram	
short	Switch on/ switch off telegram	

See above Overview:Function of Objects 9.. 14.

5.3.7 E3 as an analogue input for an external sensor

A remote sensor is connected to E3. The maximum permitted line length is 10m.

The external sensor can be configured in 2 ways.

- 1. As a sensor for temperature control (Order No. 907 0 191), i.e. it takes over the function of the fitted sensor.
- 2. As a sensor for temperature limitation in the underfloor (Order No. 907 0 321), i.e measures the underfloor temperature, and the devices sees to it that the temperature remains within the programmed maximum and minimum values, thus maintaining a comfortable atmosphere.
- 3. As a floor sensor for temoerature control (Order No. 907 0 321)

All the settings are entered on the "<u>Actual value</u>" parameter page.

5.3.8 Suitable actuators

The following devices can be used as actuators for switching, blinds, or dimmers:

Table 30

Designation	Order No.	Description
DMG 2	491 0 220	MiX series dimmer actuator
DME 2	491 0 221	Upgrade for DMG 2 and all devices in the MiX series
RMG 4 S	491 0 204	MiX series switching actuator
RME 4 S	491 0 205	Upgrade for RMG 4 S and all devices in the MiX series
JMG 4 S	491 0 250	MiX series blinds actuator
JME 4 S	491 0 251	Upgrade for JMG 4 S and all devices in the MiX series
JMG 4	490 0 250	Blinds actuator for basic device
JMG 4 24VDC	490 0 253	24V DC blinds actuator for basic device
RMG 8	490 0 251	Switching and blinds actuator for basic device
RME 8	490 0 252	Upgrade for RMG 8*, JMG 4* and HMG 8**
RMX 4	490 0 256	Upgrade for RMG 8*, JMG 4* and HMG 8**

* May be used as a switching and blinds actuator

** May only be used as a switching actuator

EIB product manuals for the above-mentioned devices are available on our downloads page at www.theben.de

5.4 2-stage heating

A 2-stage heating system consists of a slow main stage and a fast additional stage.

RAM 713 S is usually used for underfloor heating (main stage) and for the additional stage for the radiators.

RAM 713 S controls the two stages in parallel, the additional stage being controlled at a lower setpoint value.

The differential between main and additional stage is defined on the "Additional stage heating" parameter page.

Cheops actuating drives (Order No. 731 9 200) can be used for the <u>continuous</u> additional stage (recommended).

. It is also possible to use thermal actuators in connection with a HMT 6/12 or HMG 8 thermal actuator.

Thermal actuators (Order No. 907 0 248) can be used as actuators for the <u>switching</u> additional stage

An electrical additional heating can be controlled via the heating actuators HMT 6/12 or HMG 8.

5.5 Temperature control

5.5.1 Introduction

If the RAM 713 S is not configured as a switching controller, it can alternatively be configured as a P or as a PI controller, whereby PI control is preferable.

With the proportional control (P control), the control variable is statically adjusted to the control deviation.

The proportional integral control (PI control) is far more flexible, i.e. controls more quickly and more accurately.

To explain the function of both temperature controls, the following example compares the room to be heated with a vessel.

The filling level of the vessel denotes the room temperature. The water supply denotes the radiator output. The heat loss from the room is illustrated by a curve.

In our example, the maximum supply volume is 4 litres per minute and also denotes the maximum radiator output.

This maximum output is achieved with a control variable of 100%.

Accordingly, at a control variable of 50%, only half the water volume, i.e. 2 litres per minute, would flow into our vessel.

The bandwith is 4l. This means that the control controls at 100% provided the actual value is smaller than or equal to (211 - 41) = 171.

Function:

- Desired filling quantity: 21 litres (= setpoint value)
- From when should the supply flow gradually be reduced in order to avoid an overflow? :

4l below the desired filling volume, i.e. at 211 - 41 = 171 (=bandwidth)

- Original filling volume 151 (=actual value)
- The loss amounts to 11/minute

5.5.2 Response of the P-control

A filling volume of 15l gives rise to a control deviation of 211 - 151 = 61Because our actual value lies outside the bandwidth, the control will control the flow at 100% i.e. at 4l / minute

The supply quantity (control variable) is calculated from the control deviation (setpoint value – actual value) and the bandwidth. Control variable = (control deviation / bandwidth) x 100

The table below shows the response and therefore also the limits of the P-control

Tuble C1				
Filling level	Control variable	Supply	Loss	Increase in filling
				level
151	100%	4 l/min		3 l/min
191	50%	2 l/min	1 l/min	1 l/min
201	25%	1 l/min		0 l/min

Table 31

The last line indicates that the filling level cannot increase any further, because the flow allows only the same amount of water to flow in as can flow out through loss.

The result is a permanent control deviation of 11 and the setpoint value can never be reached. If the loss was 11 higher, the permanent control deviation would increase by the same amount and the filling level would never exceed the 191 mark.

In a room this would mean that the control deviation increases with a decreasing outside temperature.

P-control as temperature control

The P-control behaves during heating control as shown in the previous example. The setpoint temperature $(21^{\circ}C)$ can never quite be reached.

The permanent control deviation increases as the heat loss increases and decreases as the ambient temperature decreases.

5.5.3 Response of the PI-control

Unlike the pure P-control, the PI-control works dynamically. With this type of control, the control variable remains unchanged, even at a constant deviation.

In the first instant, the PI-control sends the same control variable as the P-control, although the longer the setpoint value is not reached, the more this value increases.

This increases is time-controlled over the so-called integrated time.

With this calculation method, the control variable does not change if the setpoint value and the actual value are the same.

Our example, therefore, shows equivalent in and outflow.

Notes on temperature control:

Effective control depends on agreement of bandwidth and integrated time with the room to be heated.

The bandwidth influences the increment of the control variable change:

Large bandwidth = finer increment on control variable change.

The integrated time influences the response time to temperature changes:

Long integrated time = slow response.

Poor agreement can result in either the setpoint value being exceeded (overshoot) or the control taking too long to reach the setpoint value.

Usually, the best results are achieved with the standard settings or the settings via system type.

Standard se	ettings:					
Settings	Set point values	Operation	Actual value	Operating mode		
Type of d	evice		RAM 713	I S		
Control			standard			•
Control by	system type					
Settings	Set point values	Operation	Actual value	Heating control	Operating mode	
Type of d	evice		RAM 713	S		
Control			user defi	ned		-

6 Glossary

6.1 Continuous and switching control

A switching (2 point) control recognises only 2 statuses, On or Off. A continuous control works with a control variable between 0% and 100% and can thus exactly dose the energy input. This achieves a pleasant and precise control.

Table 32:	Overview	controller	functions

Mode / stage	Type of control	Hysterese
Heating	switching / PI controller	positive
Cooling	switching / PI controller	negative
Additional stage	switching / P controller	negative

6.2 Hysteresis

Hysteresis determines the difference a controller's switching on and off temperature. It can be both positive and negative.

A combination of heating and cooling control influences the amount of the <u>dead zone</u>.

Without hysteresis, the control would switch on and off continuously provided the temperature is within the setpoint value range.

6.2.1 Negative hysteresis:

Heating: Heating is provided until the setpoint value has been reached.

Afterwards the heating is only switched on again when the temperature falls below the "Hysteresis setpoint value" threshold.

Cooling: Cooling lasts until the "Hysteresis setpoint value" threshold has been achieved. Afterwards it is only switched on again when the temperature rises above the setpoint.

Example of additional heating stage

Additional stage with a setpoint value of 20 °C, hysteresis 0.5 K and starting temperature 19 °C.

The additional stage is switched on and does not switch off again until the setpoint value (20°) is reached.

The temperature falls and the additional stage does not switch on again until 20 °C-0.5K= 19.5 °C.

Example cooling:

Cooling with setpoint value 25 °C, hysteresis = 1 °C and ambient temperature 27 °C. The cooling is switched and only switched off again when a temperature of 24C (25 °C – 1 °C) is achieved.

It switches on again when the temperature rises above 25 °C.

6.2.2 Positive hysteresis

Heating lasts until the temperature reaches "setpoint value + hysteresis " threshold has been achieved.

The heating is only switched on again when the temperature falls below the setpoint value.

Example heating:

Heating with setpoint value 20°C, hysteresis = 1°C and ambient temperature 19 °C. The heating is switched on and only switches off again when a temperature of 21C (20 °C + 1 °C) is achieved.

It switches on again when the temperature falls below 20 °C.

6.3 Dead zone

The dead zone is a buffer area between heating and cooling operation. Neither heating nor cooling takes place within this dead zone.

Without this buffer zone, the system would switch continuously between heating and cooling. As soon as the setpoint value had been under-run, the heating would activate and the setpoint value would not be achieved. If cooling were then to be started immediately, the temperature would fall to below the setpoint value and switch on the heating again.

Depending on the type of control the dead zone can be extended by the value of the <u>hysteresis</u>.

6.3.1 Case 1: Heating and cooling with continuous control

The dead zone (4 K) is not affected

6.3.2 Case 2: Heating with 2-point control and cooling with continuous control

The dead zone (4 K) is inceased by the value of the hysteresis (1K) and offsets the cooling setpoint value to 25 $^{\circ}$ C.

6.3.3 Case 3: Heating with continuous control and cooling with 2-point control

The dead zone (4 K) is inceased by the value of the hysteresis (1K) and offsets the cooling setpoint value to 25 $^{\circ}$ C.

6.3.4 Case 4: Heating and cooling with 2-point control

The dead zone (4 K) is inceased by the value of both hystereses (2K) and offsets the cooling setpoint value to 26 $^{\circ}$ C.

6.4 Basic setpoint value and current setpoint value

The **basic setpoint value** is the standard temperature for comfort mode and the reference temperature for reduction in standby and night modes.

The programmed basic setpoint value (see "<u>Basic setpoint value after downloading the</u> <u>application</u>") is stored in Object 0 and can be changed at all times via the bus by sending a new value to <u>Object 0</u> (EIS5).

After reset (bus returned), the last used basic setpoint value is restored.

The **current setpoint value** is the setpoint according to which control actually occurs. It is the result of all the operating mode reductions or increases depending on the control function.

Example:

At a basic setpoint value of 22° C and a reduction in night mode of 4K, the current setpoint value (in night mode) is: 22° C – 4K = 18° C. During the day (in comfort mode) the current setpoint value is 22° C (insofar as cooling operation is not active).

The formation of the current setpoint value due to the basic setpoint value can be observed in the block diagram on the next page.

The basic setpoint value is on the left, which was specified via Object 0 or set on the rotary control.

The current setpoint value is on the right, i.e. the value upon which the room temperature is effectively controlled.

As you can see in the block diagram, the current setpoint value depends on the operating moce (5) and the control function (4) selected.

The basic setpoint value limits (2) prevent an incorrect basic setpoint value from being specified to

Object 0. These are the following parameters:

- Minimum valid basic setpoint value
- Maximum valid basic setpoint value
- Minimum setting on the rotary control
- Minimum setting on the rotary control

The basic setpoint value limits (2) prevent an incorrect basic setpoint value from being specified to

6.4.1 Setpoint value calculation

Specified basic setpoint value of Object 0 or rotary control

- 2 Max. and min. valid basic setpoint values / Set-up on the rotary control
- 3 Manual setpoint value offset
- 4 Switches between heating and cooling: Automatically or via Object 6
- 5 Selects operating mode
- 6 The setpoint value is increased in cooling operation by the amount of the dead zone

- 7 The setpoint value is replaced by the setpoint value for frost protection mode
- 8 The setpoint value is replaced by the setpoint value for heat protection mode
- 9 Setpoint value after reductions conditional to the operating mode
- 10 Setpoint value after increases conditional to the operating mode
- 11 The limits for frost and heat protection must be adhered to.
- 12 Current setpoint value according to increases, reductions and limits conditional to the operation.